Glutamatergic inhibition of voltage-operated calcium channels in the avian cochlear nucleus.
نویسندگان
چکیده
The auditory nerve serves as the only excitatory input to neurons in the avian cochlear nucleus, nucleus magnocellularis (NM). NM neurons in immature animals are dependent upon auditory nerve signals; when deprived of them, many NM neurons die, and the rest atrophy. Auditory nerve terminals release glutamate, which can stimulate second messenger systems by activating a metabotropic glutamate receptor (mGluR). Therefore, it is possible that the effectors of mGluR-stimulated signal transduction systems are needed for NM neuronal survival. This study shows that mGluR activation in NM neurons attenuates voltage-dependent changes in [Ca2+]j. Voltage-dependent Ca2+ influx was also attenuated by increasing cAMP with forskolin, VIP, or 8-bromo-cAMP, indicating that mGluR activation may stimulate adenylate cyclase. The main results may be summarized as follows. NM neurons possess high voltage-activated Ca2+ channels that were modulated by quisqualate, glutamate, and (+/-)trans-ACPD, in that order of potency. Glutamatergic inhibition of Ca2+ influx was not blocked by L-AP3 or L-AP4, which antagonize the actions of mGluRs in other neural systems; it was blocked by serine-O-phosphate. Finally, the attenuation of voltage-dependent Ca2+ influx was duplicated by cAMP accumulators. Since NM neurons have high rates of spontaneous activity and higher rates of driven activity, the expression of this mGluR turns out to be very valuable: without it, [Ca2+]j could reach lethal concentrations. These results provide an important clue as to the identity of an intracellular signal that may play an important role in NM neuronal survival.
منابع مشابه
The Involvement of L-Type Voltage-Operated Calcium Channels in the Vascular Effect of Quercetin in Male Rats
In this study, the possible involvement of L-type voltage-operated calcium channels in the vasorelaxant effect of the flavonoid quercetin was investigated, using the isolated aortic rings from normal male rats. Addition of quercetin (0.1 µM-1 mM) caused a significant dose-dependent relaxation of noradrenaline (NA)- and KCl-preconstricted rings and nifedipine attenuated this response, especially...
متن کاملControl of Interneuron Firing by Subthreshold Synaptic Potentials in Principal Cells of the Dorsal Cochlear Nucleus
Voltage-gated ion channels amplify, compartmentalize, and normalize synaptic signals received by neurons. We show that voltage-gated channels activated during subthreshold glutamatergic synaptic potentials in a principal cell generate an excitatory→inhibitory synaptic sequence that excites electrically coupled interneurons. In fusiform cells of the dorsal cochlear nucleus, excitatory synapses a...
متن کاملThe Involvement of L-Type Voltage-Operated Calcium Channels in the Vascular Effect of Quercetin in Male Rats
In this study, the possible involvement of L-type voltage-operated calcium channels in the vasorelaxant effect of the flavonoid quercetin was investigated, using the isolated aortic rings from normal male rats. Addition of quercetin (0.1 µM-1 mM) caused a significant dose-dependent relaxation of noradrenaline (NA)- and KCl-preconstricted rings and nifedipine attenuated this response, especially...
متن کاملGlutamatergic calcium responses in the developing lateral superior olive: receptor types and their specific activation by synaptic activity patterns.
The lateral superior olive (LSO) is a binaural auditory brain stem nucleus that plays a central role in sound localization. Survival and maturation of developing LSO neurons critically depend on intracellular calcium signaling. Here we investigated the mechanisms by which glutamatergic afferents from the cochlear nucleus increase intracellular calcium concentration in LSO neurons. Using fura-2 ...
متن کاملCholinergic modulation of large-conductance calcium-activated potassium channels regulates synaptic strength and spine calcium in cartwheel cells of the dorsal cochlear nucleus.
Acetylcholine is a neuromodulatory transmitter that controls synaptic plasticity and sensory processing in many brain regions. The dorsal cochlear nucleus (DCN) is an auditory brainstem nucleus that integrates auditory signals from the cochlea with multisensory inputs from several brainstem nuclei and receives prominent cholinergic projections. In the auditory periphery, cholinergic modulation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 3 Pt 1 شماره
صفحات -
تاریخ انتشار 1995